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Abstract. Key to effective phonics instruction is the teaching of grapheme-

phoneme (GP) correspondences in a systematic progression that starts with the 

most frequent and consistent pronunciation rules. However, discovering the 

relevant rules is not a an easy task and usually requires subjective analysis by a 

native speaker and/or expert linguist. We describe GPA4.0, a submodule to the 

Transformer neural network model that automatizes the task of grapheme-to-

phoneme (g2p) transcription and alignment. The network is trained with four 

different languages of decreasing orthographic transparency 

(Spanish<Portuguese<French<English). Our results show that the Transformer 

model improves on the current state-of-the-art in g2p transcription and that the 

attention mechanism allows for the alignment of graphemes to their 

corresponding phonemes. From the g2p aligned words, our software provides an 

optimally ordered phonics progression based on frequency and consistency in the 

target language, as well as an ordered list of words that teachers can use. This 

work exemplifies a practical way that neural networks can be used to develop 

educational materials for research and teachers. Submodules and phonics output 

are available at, https://github.com/OlivierDehaene/GPA4.0. 

Keywords: phonics instruction, g2p, attention. 

1 Introduction 

Early phonics introduction is endorsed as the foundation of successful reading 

instruction in both education research (meta-analysis by the National Reading Panel 

[1], [2]) and cognitive neuroscience [3, 4]. However, phonics instruction is not 

universally used. One factor for its relative disaffection could be that knowing  what 

grapheme-phoneme (GP) correspondences to teach, and in what order to teach them, 

can be a difficult task, given that letter-sound relationships do not all have a one-to-one 

relationship. Take for example Spanish, a highly transparent language, meaning that a 

given letter  is nearly always pronounced the same. In stark contrast is English, which 

can have many different sounds for a single grapheme (e.g. the ‘a’ in ‘cat’, ‘mate’, 
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‘what’ or ‘about’). Cross-language research demonstrates that orthographic 

transparency influences the time and difficulty children have in learning to read[5–9] .  

Orthographic transparency is also a conundrum in neural network text-to-

speech applications that rely on grapheme-to-phoneme (g2p) transcription. G2p refers 

to converting words to their phonemes. The current state-of-the art applies long short-

term memory (LSTM) networks and recurrent neural networks using sequence-to-

sequence (seq2seq) modeling combined with an attention-mechanism [10]. More 

recently, the Transformer model has brought notable improvements in neural machine 

language transcription and language parsing [11]. These tasks that are fairly analogous 

to g2p transcription (both depend on long range dependencies and contextual 

influences). Improvement made by the Transformer model is in part due to parallel 

position encoding that curtails the need for recurrence and a self-attention field that 

enables the concatenation of information between sequences, regardless of their 

distance. The goal of the current project, GPA4.0 (Fig. 1), is to test for g2p transcription 

improvements, for the first time to our knowledge, using the Transformer model. With 

this achieved, we take advantage of the Transformer’s attention mechanism to align 

grapheme input to phoneme output, thus permitting the construction of a phonics 

progression based on the frequency and consistency of all found GP correspondences 

for any alphabetic language word list. 

 

Fig. 1. GPA4.0 steps to constructing a phonics progression. 1) g2p transcription is done using the 

Transformer neural network. 2) g2p alignment uses attention weights to align the ‘grapheme inputs’ to their 

‘phoneme outputs’. 3) a phonics progression is built by according each g2p alignment an aggregated z-score 

based on frequency and consistency in the word corpus. 

2 Experiment 

We tested the Transformer model for improved g2p transcription compared to the 

current-state-of-the-art results [10, 12] on the CMUDict database [13] while also 

comparing, for the first time to our knowledge, the results of five different languages 

of varying orthographic transparency: Spanish<Portuguese<French<English. Training 

was done using one 1080TI NVIDIA GPU on the base models for a total of 10,000 

steps. We use Tensor2Tensor (T2T) [14] an open-source system for training deep 

learning models in TensorFlow [15]. G2p alignment in our model is made possible 
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using the attention weights of the Transformer model. G2p alignment accuracy was 

analyzed in French, the only language for which we had a reference for comparison. 

Table 1 describes the word lists used and provides the minor adjustments made to 

accommodate the small amount of training data. Training was conducted on 80% of the 

data. The model’s performance was tested on the remaining 20% of data. 

To generate a language’s phonics progression, we extract all the GP 

correspondences in the list of g2p aligned words. For each GP correspondence found, 

we measure its frequency, g2p consistency and phoneme-to-grapheme consistency. The 

GP correspondences are then sorted by an aggregate weight of the prementioned 

measures’ z-scores (we apply weights of 0.7, 0.25 and 0.05 respectively, but these can 

be adjusted in the code). The weights are designed to 1) give priority to the most 

frequent GP correspondences when a pair is particularly consistent and less frequent 

but highly consistent correspondences. 

Table 1. Language wordlists used and adjustments made to the Transformer architecture 

language 
number of words 

used for training 

number of words 

used for testing 

 

number of hidden layers 3 

Spanish [16] 10,400 2,600 
 hidden size, number of 

neurons per layer 
256 

Portuguese [17] 31,200 7,800  filter size 512 

French [18] 8,000 2,000 
 h, number of  

attention heads 
4 

English [19] 8,000 2,000  attention dropout rate 0.2 

English [13] 95,069 23,767  dropout rate 0.3 

3 Results 

3.1 g2p Transcription 

The standard measures of word error rate (WER and phoneme error rate (PER) are 

reported in Table 2. WER is the total number of output errors in which there is at least 

one phoneme error / total number of words. PER is the Levenshtein distance [20] (the 

minimum number of single-character edits needed to change one word to the other) of 

the predicted phoneme sequence to the reference from the original database / the 

number of phonemes in the reference. Language WER and PER scores reflect, as 

expected, decreasing orthographic transparency. We report a slight gain over Toshniwal 

and Livescu’s best prior score on the CMUdict database. 

Table 2. Word error rate (WER) and Phoneme error rate (PER) in four languages of 

decreasing orthographic transparency 

 Spanish< Portuguese< French< English CMUDict 

WER 0.38% 2.77% 3.18% 15.04% 20.87% 

PER 0.07% 0.55% 0.89% 4.50% 4.59% 

Previous best results using the CMUDict database: WER=21.69% 

PER=5.04% 
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3.2 g2p Alignment 

Fig. 2 provides an example of encoder-decoder attention (taken from layer-4 multi-head 

attention in the decoder, see Fig. 1). As the network reads the word “bonjour” or 

“banane”, it attends to distant information required to know if a vowel followed by the 

letter ‘n’ will make a single nasal sound (e.g. ‘on’) or two distinct phonemes (e.g. a+ 

n). GPA4.0 aligns graphemes to phonemes based on the attention carrying the most 

weight. G2p alignment error rate was assessed for French using the sequence error rate, 

a correct or incorrect score for each word and the g2p alignment error rate (Levenshtein 

distance [20]). We report scores of 27.76% and 10.20% respectively. The relatively 

high sequence error rate compared to the low g2p alignment score is due to the difficulty 

in parsing silent letters not coded in the phonology of the trained wordlist. 56% of words 

in the list contain silent letters. 

 

Fig. 2. Encoder-decoder attention in g2p transcription 

4 Conclusion 

Our results demonstrate improved g2p transcription by the Transformer model. Our 

submodule, GPA4.0, takes a novel approach to developing applicable phonics tools for 

the classroom by taking advantage of neural network performance in g2p transcription 

and, in particular, the attention field for g2p alignment. This work highlights the 

difficulties for neural networks to learn the GP correspondences in decreasingly 

transparent languages. The phonics progressions for the four languages analyzed and 

their ordered wordlists are freely available. These datafiles can be used as a ‘paper’ 

support to guide reading instruction, or as stimuli for game-based reading applications 

(e.g. the GraphoGame software [3, 21]). We hope that the GPA4.0 submodule will be 

taken up as a tool for researchers and educators to generate their own phonics lessons 

with 100% decodable reading materials. GPA4.0 combines cognitive science and 

neural network technology for evidence-based reading education. Phonics progressions 

and word lists for the four different languages analyzed in this paper, as well as the 

GPA4.0 submodule code, can be downloaded at 

https://github.com/OlivierDehaene/GPA4.0. 

 

 

https://github.com/OlivierDehaene/GPA4.0
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